Introduction Test d'ajustement d'une moyenn Cadre généra Les autres tests d'ajustemen Tests paramétriques de comparaison

Les tests paramétriques

Université de Bourgogne, Licence 2 Gestion

November 13, 2024

Les tests paramétriques

Introduction

- Comme pour les intervalles de confiance, le but d'un test est de donner une propriété de toute la population en s'appuyant sur un échantillon.
- La décision se prend à l'aide d'un calcul déterminant si l'hypothèse de base (H_0) a l'air d'être plausible ou non.

Exemple (Exercice 11)

- On suppose que la teneur moyenne en cacao des tablettes d'un fabricant est de $\mu_0 = 600 \text{ g/kg}$.
- Le fabricant met sur le marché un nouveau modèle de tablettes plus chères, affirmant qu'elles ont une plus grande teneur en cacao.
- On effectue un contrôle de qualité sur n=100 tablettes fabriquées avec le nouveau procédé. On trouve une moyenne expérimentale $m^e=631~{\rm g/kg}$ et un écart-type $s^e=250~{\rm g/kg}$.
- Peut-on considérer que les nouvelles tablettes ont une plus grande teneur en cacao que les anciennes?

Autrement dit

- On dit aussi : la valeur $m^e = 631$ est-elle significativement supérieure à 600?
- C'est-à-dire : compte tenu des caractéristiques de l'échantillon (taille, moyenne et dispersion des valeurs) et d'un risque admissible d'erreur, peut-on dire que la teneur moyenne en cacao de *la population* (infinie) constituée de toutes les tablettes du nouveau modèle est supérieure à 600.

Test d'ajustement d'une moyenne

Le test d'ajustement d'une moyenne permet de répondre à cette question.

Modélisation:

- Soit X la teneur en cacao d'une nouvelle tablette et $\mu=E(X)$ la teneur moyenne en cacao des nouvelles tablettes.
- Le paramètre μ est inconnu .
- \square D'après le fabricant $\mu > 600$.
- Notons:
 - $H_0: \mu = 600$ (le fabricant a tort, pas d'amélioration) l'hypothèse nulle
 - $H_1: \mu > 600$ (le fabricant a raison) l'hypothèse alternative

- Les nouvelles tablettes coûtent plus cher. L'expérience doit être convaincante : l'acheteur n'abandonnera H_0 qu'en présence de faits expérimentaux la contredisant catégoriquement.
- Selon la décision prise, on peut commettre deux types d'erreur
 - Une erreur de 1ère espèce : si on choisit H_1 alors que H_0 est vraie.
 - Une erreur de 2ème espèce si on choisit H_0 alors que H_1 est vraie.

Le principe d'un test

- est de considèrer que l'erreur de 1ère espèce est la plus grave.
- On fixe donc la probabilité de l'erreur de 1ère espèce α maximale qu'on s'autorise (appelé également *niveau du test*).
- On choisit la plupart du temps $\alpha = 5\%$.
- Après l'étape 1. de formulation des hypothèses, un test comprend les étapes suivantes :
 - 2. On choisit la statistique appropriée au problème et on donne sa loi sous H_0 .
 - 3. On calcule l'ensemble de ses valeurs "peu probables" sous H_0 qui feraient accepter H_1 .
 - 4. On calcule la valeur de la statistique dans l'échantillon : si c'est une valeur peu probable sous H_0 , on rejette H_0 et on accepte donc H_1 .

- 2. La question porte sur l'espérance μ . La statistique adaptée est donc ici la moyenne aléatoire \overline{X}_n .
- On a vu dans le chapitre précédent que la statistique $T = \sqrt{n-1} \frac{\overline{X_n} \mu}{S_n} \text{ suit une loi de Student St(99 ddl)}.$
- Comme 99 > 70, on utilise la loi $\mathcal{N}(0,1)$.
- On estime l'écart type aléatoire S_n par $s^e=250$ et sous H_0 , $\mu=600$.
- Donc sous H_0 , $T = \sqrt{99} \frac{\overline{X_n} 600}{250} \sim \mathcal{N}(0, 1)$.

- 3. L'ensemble des valeurs de T "peu probables" sous H_0 qui feraient accepter H_1 sont les valeurs "très" grandes de T.
- C'est-à-dire toutes les valeurs supérieures au seuil t tel que

$$\mathbb{P}(T > t) = 0.05$$

- t = 1.645
- Ces valeurs définissent la zone de rejet de H₀ au niveau 5% qui est notée

$$ZR_{5\%} = \{T > 1.645\}$$

4. Valeur de la statistique dans l'échantillon :

$$T^e = \sqrt{99} \frac{631 - 600}{250} = 1.23$$

Comme 1.23 < 1.645, T^e n'est pas dans la zone de rejet de H_0 donc on prend la décision de conserver H_0 .

Remarque importante

- Dans un test, l'erreur dont on maîtrise la probabilité (5% ici) est celle qui consiste à accepter H_1 alors que c'est H_0 qui est vraie.
- Donc ici, on ne connaît pas la probabilité de l'erreur de notre décision.
- On peut seulement dire : avec cet échantillon, on ne peut pas affirmer que le fabricant a raison.

Remarque sur le choix des hypothèses

\square Choix de H_0

Selon les cas, on choisit pour H_0

- L'hypothèse qu'il est le plus grave de rejeter à tort.
- L'hypothèse dont on a admis jusqu'à présent la validité.
- H_0 est toujours une hypothèse d'égalité, car il faut pouvoir faire le calcul de la loi de la statistique sous H_0 .

\square Choix de H_1

- Une alternative suggérée par une nouvelle théorie ou une expérience récente.
- Pragmatiquement : H_1 correspond à la question posée dans l'exercice.

Introduction
Test d'ajustement d'une moyenne
Cadre général
Les autres tests d'ajustement
Tests paramétriques de comparaison

Etapes d'un test

- Formulation des hypothèses
- Statistique adaptée et sa loi sous H₀
- 3 Zone de rejet de H_0 pour un niveau α donné
- Prise de décision
- Si demandé : calcul de la p-value .

Définition de la p-value

- La <u>p-value</u> est la probabilité sous H_0 d'avoir une valeur de la statistique au moins aussi extrême que celle observée.
- Pour la calculer, on "met la valeur expérimentale au bord de la zone de rejet et on calcule la probabilité de la zone ainsi obtenue"
- Si on a accepté H_0 au niveau 5%, forcément p-value > 5%
- Si on a accepté H_1 au niveau 5%, forcément p-value < 5%.
- La p-value apporte une indication sur le bien-fondé d'une décision. Plus elle est loin de 5%, plus la décision est bien-fondée.

Retour sur l'exemple

- extstyle ext
- Donc p-value= $0.5 \varphi(1.23) = 10.93\%$
- La p-value est assez élevée, cela confirme la conservation de H_0 .

Forme de la zone de rejet de H_0

- Selon la formulation de H_1 , la zone de rejet de H_0 revêt des formes différentes.
- $H_1: \mu > \mu_0: ZR_\alpha = \{T > t_\alpha\}$ (test unilatéral supérieur).
- $H_1: \mu < \mu_0: ZR_{\alpha} = \{T < -t_{\alpha}\}$ (test unilatéral inférieur).
- $extstyle H_1: \mu
 eq \mu_0: ZR_lpha = \{T < -t_lpha\} ext{ ou } \{T > t_lpha\} ext{ (test bilatéral)}$
- Et donc la p-value se calcule ainsi :
 - $H_1: \mu > \mu_0: \text{ p-value} = \mathbb{P}(T > t^e)$
 - $H_1: \mu < \mu_0: \text{ p-value} = \mathbb{P}(T < t^e) \ (t^e < 0 \text{ forcément})$
 - $H_1: \mu \neq \mu_0:$ p-value= $\mathbb{P}(T < -t^e) + \mathbb{P}(T > t^e) = 2 \times \mathbb{P}(T > t^e)$

Exercice 12

- Un atelier de fabrication produit des portes dont la hauteur est une variable aléatoire d'espérance $\mu_0=2.5$ mètres. Pour vérifier si ses machines sont bien réglées, le nouveau directeur de l'atelier fait mesurer les hauteurs de 100 portes tirées au hasard et observe $m_e=2.48$ et $s_e=0.1$.
- Faire un test bilatéral au niveau 5% pour dire si les machines sont bien réglées.
- Calculer la p-value.

Correction

- 1) **Hypothèses** notons *X* la variable aléatoire donnant la hauteur d'une porte.
- Notons $\mu = E(X)$
- B

 H_0 : $\mu=2.5$ (les machines sont bien réglées)

 H_{1} : $\mu \neq 2.5$ (les machines sont mal réglées)

 \square 2) Statistique et loi sous H_0

Notons $\overline{X_{100}}$ la moyenne aléatoire des portes dans des échantillons de n=100 portes.

On a : $s_e = 0.1 \text{ donc}$:

$$T = \sqrt{99} \frac{\overline{X_{100}} - 2.5}{0.1} \sim St(99)$$

- 3) Zone de rejet de H_0 pour $\alpha = 0.05$
- On fait un test bilatéral donc :

4) Décision

137

137

$$ZR_{5\%} = \{ T < -1.96 \text{ ou } T > 1.96 \}$$

$$T^{e} = \sqrt{99} \frac{2.48 - 2.5}{0.1} = -2$$

- Donc T^e est dans la zone de rejet de H_0 .
- **Conclusion** avec un risque de 5 % d'erreur, on peut dire que les machines sont mal réglées.
- 5) p-value $T^e=-2$ donc : p-value = $\mathbb{P}(T<-2$ ou $T>2)=2\times\mathbb{P}(T>2)=4.5\%$
- La p-value est proche de 5% donc on est proche de la limite de décision.

Ajustement d'une proportion

On s'intéresse cette fois à une proportion *p* inconnue d'individus possèdant un caractère fixé dans une population.

$$H_0$$
 : $p = p_0$
 H_1 : $p \neq p_0$ (ou $p > p_0$ ou $p < p_0$)

On utilise la proportion aléatoire P_n d'individus possédant le caractère dans les échantillons de taille n.

Si on dispose d'un échantillon suffisamment grand (n > 30), sous H_0

$$P_n pprox \mathcal{N}\left(p_0, rac{p_0(1-p_0)}{n}
ight).$$

On utilise donc la statistique

$$Z = rac{P_n - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}} pprox \mathcal{N}\left(0,1
ight).$$

Exercice 13

- Une machine remplit des sachets pour avoir un poids moyen de 50 grammes. Certains sachets ont un poids inférieur à 50g. On pense qu'en moyenne, on a 46% de sachets en sous-poids.
- On souhaiterait savoir si on ne sous-estime pas le nombre de sachets en sous-poids.
- On choisit au hasard un échantillon de n=400 sachets et on trouve 48% des sachets en sous-poids. Faire un test unilatéral au niveau 5% pour conclure.
- Calculer la p-value.

Correction

Soit p la proportion de sachets en sous-poids. On veut tester

B

$$H_0$$
: $p = 0.46$ (on ne se trompe pas)
 H_1 : $p > 0.46$ (plus de sachets en sous-poids que l'on pense)

- Notons P_{400} la proportion aléatoire de sachets en sous-poids dans des échantillons de taille n = 400.
- Sous H_0 ,

$$P_{400} \approx \mathcal{N}\left(0.46, \frac{0.46(1-0.46)}{400}\right) = \mathcal{N}\left(0.46, 0.025^2\right)$$

☞ et

$$Z = \frac{P_{400} - 0.46}{0.025} \approx \mathcal{N}(0, 1)$$
.

 \square Considérant H_1 , on a:

$$ZR_{5\%} = \{Z > 1.645\}$$

$$Z^e = \frac{p^e - 0.46}{0.025} = \frac{0.48 - 0.46}{0.025} = 0.8$$

- Z^e n'est pas dans la zone de rejet de H_0 donc on accepte H_0 .
- **Conclusion** Avec cet échantillon, on ne peut pas dire qu'on sous-estime le nombre de sachets en sous-poids.
- p-value = $\mathbb{P}(Z > 0.8) = 21.1\%$
- On est loin d'accepter H_1 .

Ajustement d'une variance

- Soit une population \mathcal{P} et une variable X quantitative sur \mathcal{P} de variance inconnue σ^2 .
- $H_0: \sigma = \sigma_0$ contre $H_1: \sigma \neq \sigma_0$ (ou unilatéral)
- On note V_n la variance aléatoire.
- Sous H_0 , la statistique $Y=rac{nV_n}{\sigma_0^2}$ suit une loi du χ^2 à n-1 ddl.
- La zone de rejet est :
 - Test bilatéral : $ZR_{5\%} = \{Y < x_1 \text{ ou } Y > x_2\}$ avec x_1 et x_2 tels que $\mathbb{P}(Y < x_1) = 0.025$ et $\mathbb{P}(Y > x_2) = 0.025$.
 - Test unilatéral inférieur : $ZR_{5\%} = \{Y < x_1\}$ avec x_1 tel que $\mathbb{P}(Y < x_1) = 0.05$.
 - Test unilatéral supérieur : $ZR_{5\%} = \{Y > x_2\}$ avec x_2 tel que $\mathbb{P}(Y > x_2) = 0.05$.

Exercice 14

- Un client a remarqué que la durée de vie de ses ordinateurs a souvent une grande dispersion ($\sigma_0 = 5$ mois). Cela ne lui convient pas car il veut pouvoir renouveler son parc informatique en une seule fois. Un nouveau fournisseur affirme que l'écart-type de la durée de vie de ses nouvelles machines est réduit. Pour tester son information, nous observons 24 machines et mesurons un écart-type de $s^e = 2.5$ mois.
- Question: est-ce que la durée de vie des nouvelles machines a une dispersion plus faible que les anciennes (au niveau 5%)?

Correction

Notons σ l'écart-type de la durée de vie des nouvelles machines

B

 H_0 : $\sigma = 5$ (même dispersion) H_1 : $\sigma < 5$ (dispersion plus faible que les anciennes)

- Notons V_{24} la variance aléatoire des durées vie d'un échantillon de 24 nouvaux ordinateurs.
- Posons

$$Y = \frac{24 \times V_{24}}{5^2}$$

Sous H_0 , Y suit une loi du χ^2 à 23 ddl.

 \square Considérant H_1 ,

$$ZR_{5\%} = \{ Y < 13.091 \}$$

B

$$Y^e = \frac{24 \times 2.5^2}{5^2} = 6$$

- Y^e est dans la zone de rejet de H_0 donc on accepte H_1
- **Conclusion** on peut dire avec un risque d'erreur de 5% que la durée de vie des nouvelles machine a une dispersion plus faible.

Si on veut comparer deux populations, il faut utiliser un test **de comparaison**.

Comparaison de 2 moyennes

- Il y a **deux** populations \mathcal{P}_1 et \mathcal{P}_2 et **deux** échantillons de taille n_1 et n_2 extraits.
- On note μ_1,μ_2 les moyennes (inconnues) de la variable étudiée X sur \mathcal{P}_1 et \mathcal{P}_2 .
- On veut tester H_0 : $\mu_1 = \mu_2$ contre
 - H_1 : $\mu_1 \neq \mu_2$ (test bilatéral)
 - ou H_1 : $\mu_1 < \mu_2$ (test unilatéral)
- On note $\overline{X_{n_1}}, \overline{X_{n_2}}$ les moyennes aléatoires.

La statistique à utiliser est

$$T = \frac{\overline{X_{n_1}} - \overline{X_{n_2}}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

où
$$S$$
 est estimé par $s = \sqrt{\frac{n_1 v_1^e + n_2 v_2^e}{n_1 + n_2 - 2}}$.

Résultat : Sous H_0 , T suit une loi de Student à $n_1 + n_2 - 2$ ddl

Exercice 15

- Un fabriquant de câbles en acier étudie un nouveau traitement de câbles pour améliorer leur résistance. Il choisit au hasard $n_1 = 200$ câbles traités et $n_2 = 100$ câbles non traités. On note X la charge de rupture d'un câble.
- Pour les câbles traités, il observe $m_1 = 30,82$ $v_1^e = 27,25$ et pour les non-traités, $m_2 = 29,63$ $v_2^e = 23,99$.
- Peut-on conclure à l'efficacité du traitement (au niveau 5%) ?

Correction

- Notons
 - \mathcal{P}_1 la population des câbles traités
 - \mathcal{P}_2 la population des câbles non traités
 - ullet μ_1 la charge de rupture moyenne dans \mathcal{P}_1 et μ_2 dans \mathcal{P}_2

B

$$H_0$$
: $\mu_1 = \mu_2$
 H_1 : $\mu_1 > \mu_2$

B

Notons $\overline{X_{n_1}}$ (resp. $\overline{X_{n_2}}$) la charge de rupture moyenne aléatoire des échantillons de taille n_1 (resp. n_2) issu de \mathcal{P}_1 (resp. \mathcal{P}_2).

Posons
$$T = \frac{\overline{X_{n_1}} - \overline{X_{n_2}}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 où $s = \sqrt{\frac{n_1 v_1^e + n_2 v_2^e}{n_1 + n_2 - 2}} = 5.132$

- Sous H_0 , T suit une loi du $St(298ddI) \approx \mathcal{N}(0,1)$
- on accepte H_1 si T est une "grande" valeur positive donc

$$ZR_{5\%} = \{T > 1.645\}$$

$$T^e = \frac{30.82 - 29.63}{s \times \sqrt{\frac{1}{200} + \frac{1}{100}}} = 1.89$$

- T^e est dans la zone de rejet de H_0 donc on accepte H_1
- **Conclusion** on peut dire avec un risque d'erreur de 5% que le traitement est efficace.

Comparaison de 2 proportions

- On souhaite tester : H_0 : $p_1 = p_2$ contre H_1 : $p_1 \neq p_2$.
- Notons P_{n_1}, P_{n_2} les proportions aléatoires correspondantes.
- Résultat : sous H_0

$$P_{n_1} - P_{n_2} \approx \mathcal{N}\left(0, p_0(1-p_0)(\frac{1}{n_1} + \frac{1}{n_2})\right)$$

avec
$$p_0 = \frac{n_1 p_1^e + n_2 p_2^e}{n_1 + n_2}$$

On fait le test sur la variable centrée réduite Z associée.

Exercice 17

A la sortie de deux salles de cinéma donnant le même film, on a interrogé des spectateurs quant à leur opinion sur le film. Les résultats de ce sondage d'opinion sont les suivants :

Opinion	Mauvais film	Bon film	Total
Salle 1	30	70	100
Salle 2	48	52	100
Total	78	122	200

Peut-on dire que la proportion de personnes appréciant le film comme "bon" est différente entre les deux salles?

Notons

- p_1 proportion de personnes trouvant le film bon dans la salle 1.
- p₂ ————————— salle 2.

B

$$H_0$$
: $p_1 = p_2$
 H_1 : $p_1 \neq p_2$

- Notons P_{n_1} , P_{n_2} les proportions aléatoires correspondantes.
- Sous H_0 , $P_{n_1} P_{n_2}$ suit une loi $\mathcal{N}\left(0, p_0(1-p_0)(\frac{1}{n_1} + \frac{1}{n_2})\right)$ avec $p_0 = \frac{n_1 p_1^e + n_2 p_2^e}{n_1 + n_2} = 0.61$.
- Donc $P_{n_1} P_{n_2} \sim \mathcal{N}(0, 0.069^2)$.

Donc sous
$$H_0$$
, $Z = \frac{P_{n_1} - P_{n_2}}{0.069} \sim \mathcal{N}(0, 1)$.

$$ZR_{5\%} = \{Z < -1.96 \text{ ou } Z > 1.96\}$$

$$Z^e = \frac{0.7 - 0.52}{0.069} = 2.61$$
. On accepte H_1 .

Conclusion Avec un risque d'erreur de 5%, on peut dire que la salle influence l'opinion des gens.