Contrôle continu - 45min

NOM: PRENOM: GROUPE:

Les résultats seront donnés avec 3 chiffres derrière la virgule

Exercice 1:

1. 1
pt X étant une variable aléatoire de loi binomiale $\mathcal{B}(5,0.4),$ calculer $\mathbb{P}(X\geq 4).$

Réponse: 0.087

2. 1pt X étant une variable aléatoire de loi de Poisson $\mathcal{P}(4)$, calculer $\mathbb{P}(X \leq 2)$.

Réponse : $e^{-4}(1+4+8) = 0.238$

Exercice 2 : Soit T donnant la durée de vie (en jours) d'un certain type de composant électronique. Supposons que T suit une loi exponentielle de paramètre $\lambda = 0.0004$.

1. 1pt Donner la durée de vie moyenne de ces composants.

Réponse: 2500 jours

2. 1pt Déterminer la probabilité qu'un composant pris au hasard ait une durée de vie inférieure à 2 000 jours.

Réponse : $1 - e^{-0.0004 \times 2000} = 0.551$

Exercice 3 : Un type de pièce de monnaie a un poids distribué suivant une loi normale d'espérance 10 g et de variance 0.15^2 g .

1. 1pt Notons X la variable aléatoire donnant le poids de n=100 pièces de ce type. Enoncer le résultat vu en cours qui permet de dire que X suit une loi normale d'espérance 1000 et de variance 1.5^2 .

Réponse : Si $X_1,...,X_n$ sont des v.a. indépendantes de loi $\mathcal{N}(m;\sigma^2)$ alors :

$$X_1 + \cdots + X_n \sim \mathcal{N}(nm; n\sigma^2).$$

2. 1pt Calculer la Réponse : 0.0	probabilité que le poids de n pièces dépasse 1002 g. 092
3. 2pt Calculer le Réponse : x=	nombre x tel que la probabilité que le poids de n pièces dépasse x soit de 5%. =1002.467
dans une certaine po	éresse à l'estimation de la proportion p d'individus touchés par une maladie professionnelle pulation. On sélectionne un échantillon de $n=100$ personnes et on trouve 6 personnes
	intervalle de confiance 0.95 pour p . $p_{.95}(p) = [1.34\%, 10.65\%]$
	taille minimale de l'échantillon qui permettrait d'avoir un intervalle de confiance 0.95 pour cision de 0.02 (on utilisera la proportion de malades de l'échantillon précédent).