# Chapitre 2:

# 1: Moyenne, médian, mode

Définition 1 : La moyenne empirique de l'échantillon  $x_i$  i = 1, 2, ..., N, notée  $\overline{x}$ , est la moyenne arithmétique de ces vals observées.

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Définition 2 : Le mode empirique de l'échantillon x<sub>i</sub> i=1, ..., N est la valeur qui correspond à la fréquence la plus élevé Graphique sur feuille

# Remarques:

- Le mode empirique est la valeur la plus fréquemment observée ds l'échantillon
- Le mode n'est pas nécessairement unique
- On utilise le mode principalement pr étudier les distributions des vars catégoriques ou des vars num discrètes
- Soit x une var num continue dont les vals sont regroupées ds les classes C<sub>1</sub> l = 1, ..., L. Le centre de la classe correspond à la fréquence la plus élevée est définie comme le mode de cette var

Exemple:  $x_i$  i = 1, 2, ..., 7

PIB/hab en \$

| Allemagne | Canada    | E-U       | FR     | Italie | Japon  | R-U       |
|-----------|-----------|-----------|--------|--------|--------|-----------|
| 41 259.18 | 42 294,23 | 58 559,67 | 35 765 | 29 296 | 34 813 | 43 020,20 |
|           |           |           |        |        |        |           |

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \quad N = 7$$

$$= \frac{1}{7} \sum_{i=1}^{N} x_i = 1/7 \text{ (41 259,18, ..., 43 020,20)}$$

$$= 40 715,5$$

Exemple : Le tableau ci-dessous présente le nbr de paiements d'împots par les entreprises.  $(y_i, i = 1, ..., 15)$  ds 15 pays

| i              | 1 | 2  | 3  | 4  | 5 | 6 | 7 | 8 |
|----------------|---|----|----|----|---|---|---|---|
| y <sub>i</sub> | 9 | 12 | 11 | 10 | 9 | 8 | 9 | 8 |

| i              | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----------------|---|----|----|----|----|----|----|
| y <sub>i</sub> | 9 | 14 | 8  | 23 | 9  | 9  | 6  |

$$\overline{x} = 1/15 (9+12+...+6) = 10,27$$

Propriété : (la moyenne empirique) Soit a et b des nbr réels et supposons que ns observons  $x_i$  et  $y_i$  i = 1, 2, ..., N

1- Soit y, définie par yi = a + bx. Alors  $\overline{y} = a + b\overline{x}$ 

2-  $x_i = ay + bx$ , alors  $\overline{z} = a\overline{y} + b\overline{x}$ 

Proposition: La somme des écarts à la moyenne est nulle:

$$\sum_{i=1}^{N} (xi - \overline{x})$$

 $\overline{x}$  ne dépend pas de i

Demonstration: 
$$\sum_{i=1}^{N} (xi - \overline{x}) = \sum_{i=1}^{N} xi - \sum_{i=1}^{N} \overline{x}$$
  
=  $\sum_{i=1}^{N} xi - N\overline{x}$   
=  $N\overline{x} - N\overline{x}$ 

# Exemple:

1- Après avoir changé l'unité de la variable de \$ en 1000\$. Calculer la moyenne de cette var notée y<sub>i</sub> i = 1, 2, ..., 7

| i  | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|----|-------|-------|-------|-------|-------|-------|-------|
| yi | 41,26 | 42,29 | 58,56 | 35,76 | 29,30 | 34,81 | 43,02 |

$$y_i = 0 + 1/1000 x_i$$
;  $\overline{y} = 1/1000 \overline{x} = 40,72$ 

 $\tilde{y} = \text{ecart à la moyenne}$ 

# Les quantiles :

Définition : La quantile empirique d'ordre h de l'echantillon x<sub>i</sub> i=1n...,N notée q<sub>h</sub> est la val telle que 100 x h% des observations ds l'echantillon sont inférieures à cette val.

Remarques : Les cas spécifiques des quantiles.

- 1- Si k est entre 0 et 100, le quantile d'ordre h = k/100 est appelé kième centile (ou percentile)
- 2- Les quantiles d'ordre 0,25 ; 0,5 ; 0,75 sont appelés le premier, le deuxième, et le troisième QUARTILES repectivement. Q<sub>1</sub>, Q<sub>2</sub>, Q<sub>3</sub>
- 3- Le deuxième QUARTILE Q2, noté également mx, est appelé le médian

Notons  $x_{(i)}$  i = 1, ..., N les observations placées en ordre. C'est-à-dire

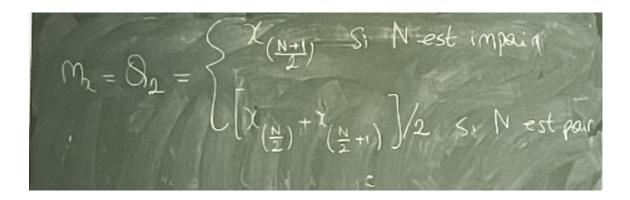
$$X_{(1)} \le X_{(2)} \le X_{(3)}$$

Nous trouvons le quantile d'ordre h en utilisant  $q_h = x_{(1+(N-1)h)}$ 

$$Q_1 = x_{(1+(N-1)/4)}$$

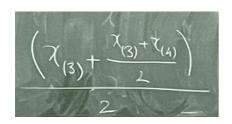
$$m_x = Q_2 = x_{(1 \, + \, (N\text{-}1)/2)}$$

$$Q_3 = x_{(1+(N-1)x^{3/4})}$$



Ds ce cas où l'indice (i) n'est pas un entier on utilise la méthode d'interpelation.

Exemple : si  $q_h = x_{(3,25)}$  ns prenons la val qui est située à 25% du chemin entre  $x_{(3)}$  et  $x_{(4)}$ 



$$x_{(3)} + 0.25 (x_{(4)} - x_{(3)})$$

$$q_h = x_{(5,6)}$$
  
 $q_h = x_{(5)} + 0.6 (x_{(6)} - x_{(5)})$ 

### Exercice:

| i  | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|----|-------|-------|-------|-------|-------|-------|-------|
| yi | 41,26 | 42,29 | 58,56 | 35,76 | 29,30 | 34,81 | 43,02 |
|    |       |       |       |       |       |       |       |
| i  | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| yi | 29,3  | 34,81 | 35,76 | 41,26 | 42,29 | 43,02 | 58,56 |

Min = 
$$y_{(1)} = 29.3$$
 Max =  $y_{(7)} = 58.56$ 

Les quantiles d'ordre 0,2 et 0,8

b- h = 0,8. 
$$Q_{(0,8)} = y_{(1+6 \times 0,8)} = y_{(5,8)} = y_{(5)} + 0,8 (y_{(6)}-y_{(5)}) = 42,29 + 0,8 (43,02-42,29) = 42,87$$

$$Q_2 = m_y = y_{(N+1/2)} = y_{(4)} = 41,26$$

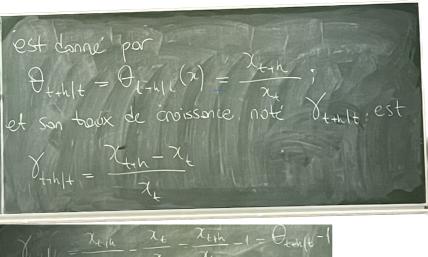
$$Q_1 = Q_{(0,25)} = y_{(1+(N-1)/4)} = y_{(2,5)} = (y_{(3)} + y_{(2)})/2 = 35,28$$

$$Q_3 = 42,65$$

Transformation des séries temporellles :

$$x_t t = 1, 2, ..., T$$

Définition : Soit une var x mesurée en t et t+h, h>0 Son coeff multiplicateur multiplicateur entre t et t+h, noté  $\theta_{t+h t}$ 





Exercice : Déterminer le taux de croissance et coeff multiplicateur entre 2000 et 2001

(i) 
$$x_{2001} = 3x_{2000}$$
. (ii)  $x_{2001} = x_{2000/8}$ 

(i) 
$$t = 2000$$
  $h = 1$ .  $t+h = 2001$ 

$$\theta_{t+h\;t} = \theta_{2001\;2000} = x_{2001}/x_{2000} = 3x_{2000}/x_{2000} = 3$$

 $\delta_{2001\ 2000} = 2$ 

(ii) 
$$\theta_{2001\ 2000} = (\mathbf{x}_{2000/8})/\mathbf{x}_{2000} = 1/8$$

$$x_{2001\ 2000} = 1/8 - 1 = -7/8$$

# Mesure de la dispersion :

Étendue et écart-interquartile :

Définition : l'étendue d'un échantillon  $x_i$  i = 1, ..., N, notée ETE(x) est définie par : ETE(x) = Max(x) - Min(x), et l'écart-interquartile de x est donné par

$$EIS(z) = O_g(z) - O_i(z)$$

Propriété : Soit  $\alpha$  et  $\beta$  deux nbr réels,  $x_i$  i=1,...,N une var stat, et  $y_i$  i=1,...,N définie par  $y_i = \alpha + \beta x_i$  Alors  $ETE(y) = \alpha + \beta ETE(x)$ ;  $EQ(y) = \alpha + \beta EIQ(y)$  Exemple:  $y_i i = 1, 2, ..., 7$ 

Min (y) = 29,30

Max(y) = 58,56

 $Q_1(y) = 35,28$ 

ETE(y) = Max(y) - Min(y) = 58,56 - 29,30 = 29,26

 $EIQ(y) = Q_3(y) - Q_1(y) = 42,25 - 35,28 = 7,7$ 

 $y_{(8)} = 116,36$ 

Min(y) = 29,30

Max(y) = 116,36

ETE(y) = 116,36 - 29,30 = 87,06

EIQ(y) = 11,38

EIQ est plus robuste aux vals extrêmes

# Variance empirique et écart-type empirique :

Définition : la variance empirique de l'echantillon  $x_i$  i = 1, ..., N notée  $S_x^2$  est définie par :  $S_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$ 

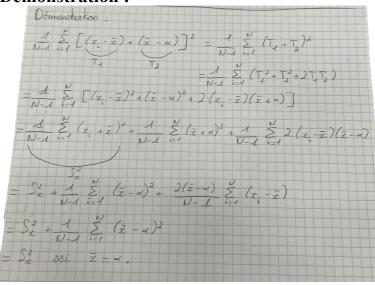
Définition : L'écart type, noté  $S_x$  est égale à  $S_x = \sqrt{S_x^2}$ 

**Propriété**: la variance empirique de  $x_i$  i = 1, ..., N est tjrs positive :  $S_x^2 >= 0$ 

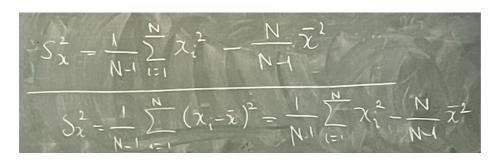
**Propriété**: Soit  $\alpha$  et  $\beta$  deux nbr réels  $x_i$  i = 1, ..., N une var stat et  $y_i = \alpha + \beta x_i$  Alors  $S_y^2 = \beta^2 S_x^2$ ;  $\beta S_x$ 

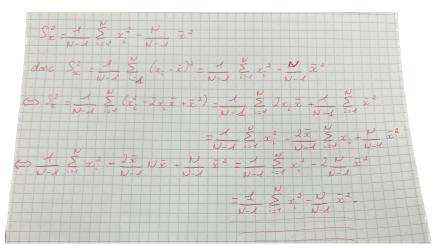
Proposition : La moyenne des carrés des écarts par rapport à la moyenne est min. Autrement dit l'expression :  $\frac{1}{N-1}\sum_{i=1}^{N}(x_i-a)^2$  est min pr  $\alpha=\overline{x}$ 

#### **Démonstration:**



Proposition : La variance empirique de  $x_i$  i = 1, ..., N peut être calculée en utilisant la formule suivante :





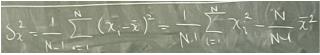
Définition : le coeff de var de  $x_i$  i = 1, ..., N.  $CV_x = \frac{Sx}{\overline{x}}$ 

Définition : Le z-score de la var  $x_i$  i=1,...,N notée  $z_i(x)$  est donné par  $z_i(x)=x_i-\overline{x}$  /  $S_x$ 

Proposition:  $z_i \overline{(x)} = \frac{1}{N} \sum_{i=1}^{N} z_i(x) = \frac{1}{N} \sum_{i=1}^{N} x_i - \overline{x} / Sx = 0$ 

Mesures de la relation existe entre 2 variables

Définition : Pr un échantillon de taille N des observation  $(x_i; y_i)$  i = 1,..., N la covariance empirique est définie par :  $S_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (xi - \overline{x})(yi - \overline{y})$ 



$$S_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} xiyi - \frac{N}{N-1} \overline{xy}$$

Définition : Le coeff de corrélation entre  $x_i$  et  $y_i$  :  $r_{xy} = S_{xy} / S_x S_y$ 

Propriété :  $-1 \le r_{xy} \le 1$ 

Propriété : Soit  $\alpha$  et  $\beta$  deux nbrs réels,  $y_i$  et  $x_i$  deux variables stats  $i=1,\ldots,N$  et  $g_i=\alpha+x_i$ ;  $d_i=\beta+y_i$ ;  $z_i=\alpha x_i$ ;  $h_i=\beta y_i$ ;  $w_i=x_i+y_i$ 

- 1)  $Sxx = S_x^2$
- 2) Syx = Sxy
- 3) Sgd = Sxy
- 4)  $Szh = \alpha \beta Sxy$
- 5)  $S\alpha x = 0$
- 6)  $S_w^2 = S_x^2 + S_y^2 + 2S_{xy}$

Calcul de la moyenne et la variance à partir d'un tableau de fréquence :

| $C_1$          | nı             |
|----------------|----------------|
| $\mathbf{C}_1$ | $n_1$          |
| $C_2$          | n <sub>2</sub> |
| $C_1$          | nı             |
| Total          | N              |

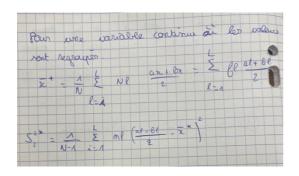
Pr une var discrète où  $C_l$  sont les vals prises par la var :

$$.\overline{x} = \frac{1}{N} \sum_{i=1}^{N} nl \ Cl = \sum_{i=1}^{N} fl \ Cl$$
$$.\frac{1}{N-1} \sum_{i=1}^{N} nl \ (Cl - \overline{x})^{2}$$

# Exemple:

| i  | 1 | 2 | 3 | 4 | 5 |  |  |  |
|----|---|---|---|---|---|--|--|--|
| Xi | 2 | 2 | 1 | 1 | 2 |  |  |  |

Pour une var continue où les vals sont regroupés :



Calcul pour la position :

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$Q_h = x_{(1+(N+1)/h)} + Q_1 + Q_3$$

Calcul pour la dispersion :

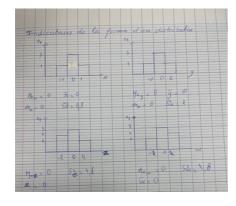
$$S_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

$$S_x = \sqrt{S_x^2}$$

$$CV_x = \frac{Sx}{\overline{x}}$$

$$ETE(y) = Max(y) - Min(y)$$

$$EIQ(y) = Q_3(y) - Q_1(y)$$



Définition : Le moment centré d'ordre r de la var  $x_i$  i=1, ..., N notée  $m_r(x)$  est définie par  $m_r(x)$  :  $\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^r$ 

Remarque:

$$m_1(x) = 0$$

$$m_2(x) = \frac{N-1}{N} S_x^2$$

Propriété : Soit  $\alpha$  et  $\beta$  deux nbrs réels  $x_i$  i=1, ..., N une var stat et  $y_i = \alpha + \beta x_i$ Alors :  $m_r(x) = \beta^r m_r(x)$ 

Propriété : Soit  $x_i$  i = 1, ..., N une var stat. Si la dist de x est symétrique 1)  $Mo(x) = m_x$ 

- 2)  $Mo(x) = \overline{x}$
- 3)  $M_3(x) = 0$

| i  | 1  | 2  | 3 | 4 | 5 |
|----|----|----|---|---|---|
| Xi | -1 | 0  | 0 | 0 | 1 |
| yi | -2 | 0  | 0 | 0 | 2 |
| Zi | -2 | -2 | 0 | 0 | 4 |
| Wi | -4 | 0  | 0 | 2 | 2 |

$$.\overline{x} = \overline{y} = \overline{z} = \overline{w}$$

$$S_x^2 = 0.5$$
.  $S_y^2 = 2$ .  $S_z^2 = S_w^2 = 4.8$ 

$$m_3(z) = \frac{1}{N} \sum_{i=1}^{N} (z_i - \overline{z})^3 = \frac{1}{5} ((-2)^3 + (-2)^3 + 0^3 + 0^3 + 4^3) = 9,6$$

$$m_3(w) = \frac{1}{N} \sum_{i=1}^{N} (w_i - \overline{w})^3 = \frac{1}{5} ((-4)^3 + 0^3 + 0^3 + 2^3 + 2^3) = -9,6$$

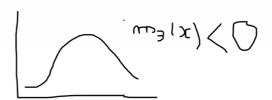
$$m_3(w) = \frac{1}{N} \sum_{i=1}^{N} (w_i - \overline{w})^3 = \frac{1}{5} ((-4)^3 + 0^3 + 0^3 + 2^3 + 2^3) = -9,6$$

Les distributions sont asymétriques

Pr une var  $x_i$  i = 1, ..., N

- 1) La distribution de x est symétrique si  $m_3(x) = 0$
- 2) La distribution est étalée vers la gauche si  $m_3(x) < 0$
- 3) La distribution est étalée vers la droite si  $m_3(x)>0$





Si  $m_3 < 0$  alors  $b_1 < 0$ 

Si  $m_3 > 0$  alors  $b_1 > 0$ 

Si  $m_3 = 0$  alors  $b_1 = 0$ 

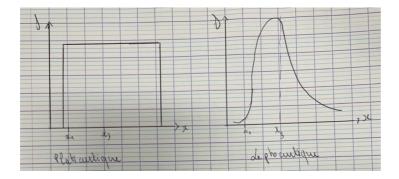
Définition : Le coeff d'asymétrie de Fisher-Pearson de  $x_i$  i=1, ...,N noté  $b_1(x)$ 

est donnée :  $b_1(x) = \frac{m3(x)}{c_{r^2}}$ 

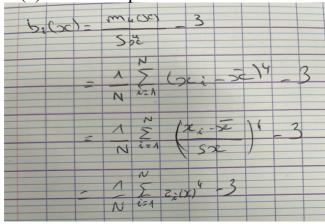
#### Définition:

- Une distribution est dite applatie ou platicurtique si pr une variance donnée, une forte variation de la var entraine une faible variation de sa freq relative.
- Une distribution est dite pointue ou leptocurtique si pr une variance donnée une faible variation de la var entraîne une forte var de sa freq relative

9



Définition : Le coeff d'applatissement de Fisher-Pearson de  $x_i$  i = 1, ..., N noté  $b_2(x)$  est définie par :



Si  $b_2(x) < 0$  la dist est platicurtique

Si  $b_2(x) > 0$  la dist est leptocurtique

### Exemple:

| i              | 1    | 2     | 3     | 4     | 5     | 6     | 7     | 8      |
|----------------|------|-------|-------|-------|-------|-------|-------|--------|
| y <sub>i</sub> | 29,3 | 34,81 | 35,76 | 41,26 | 42,29 | 43,02 | 58,56 | 116,36 |

$$z_i(y) = -0.743$$
 2,3564  
 $z_i(y)^3 = -0.4101$  13,0898  
 $z_i(y)^4 = 0.3047$  30,8302

$$b_1(y) = \frac{1}{N} \sum_{i=1}^{N} z_i(y)^2 = \frac{1}{8} ((-0.743)^3 + \dots + (2.3564)^3) = 1.5414$$
  
Etalée vers la droite  
$$b_2(y) = \frac{1}{N} \sum_{i=1}^{N} z_i(y)^4 - 3 = \frac{1}{8} (0.3047 + \dots + 30.8302) - 3 = 0.9153$$

Leptocurtique / à la normal